

Rapidox 1100J Argon Gas Analyser

The Rapidox 1100J is a cost-effective argon gas analyser fitted with a durable thermal conductivity (TCD) sensor. The sensor is carefully heated to 50°C to prevent any ambient temperature changes causing drifting. Specifically designed to analyse argon purity in percent measurements, the Rapidox 1100J is ideal for applications such as welding, casting, titanium manufacturer, inert blanketing and glazing.

Configuration of the analyser allows for the instrument to be panel mounted with the gas fittings at either the front or rear.

Please contact Cambridge Sensotec for further information or to discuss your requirements.

Though highly configurable to suit individual customer requirements, the Rapidox 1100 range possesses a number of standard features to enhance functionality.

- Long life TCD sensor
- Fully configurable software
- Fast and accurate response
- Simple calibration procedure
- Fully programmable outputs
- Data logging
- Pump or ejector option
- Two programmable alarms
- Operates on worldwide mains voltage
- Password protection

Applications

Research & Development

 O_2

Inert Gas Blanketing

Accessories

Specification	
Ar Sensor Range	0-10% or 0-100%
Ar Sensor Accuracy & Response	±1% of full scale. Approximately 20 sec for a 90% response
Ar Sensor Life Expectancy	Approximately 5 years
Ambient Operating Pressure	700-1300mbar absolute
Max Gas Pressure	500-1500mbar absolute
Max. Sample Gas Temperature	50°C
Ambient Operating Temperature	5°C to 35°C
Warm-up Time	5 minutes
Voltage	90-260 VAC, 50/60Hz
Voltage Outputs	0-10V, user programmable
Current Outputs	4-20mA linear, user programmable
Digital Outputs	RS232 (RS485 option available) Data streamed on demand. Modbus RTU/Ethernet
Calibration	Requires 2 user selectable gas compositions
Sample Connections	4mm ID/6mm OD nipple type. Rectus or Swagelok. Front or rear positioning
Display	16 x 2 character (9mm) back-lit LCD
Analyser Dimensions	Bench: 150mm(H) x 253mm(W) x 272mm(D), Panel: 300 x 4µ (177mm(H) x 300mm(W)
Weight	3.5kg (4kg with bezel)
Pump Option	Main type diaphragm pump. Variable speed 0-1.2 litres per minute
Ejector Option	Vacuum ejector fitted, running off inlet pressure
Alarms	Relay circuits, user programmable

+44 (0)1480 462142 www.cambridge-sensotec.co.uk info@cambridge-sensotec.co.uk

Cambridge Sensotec Limited. Unit 29 Stephenson Road, St Ives, Cambs, PE27 3WJ, United Kingdom Due to continuous product development necessary changes to specifications may be made without prior notice. Issue no: D11-407-1